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K HIGH-CURRENT DENSITY, HIGH-BRIGHTNESS ELECTRON BEAMS
N FROM LARGE-AREA LANTHANUM HEXABORIDE CATHODES*
&
Y
b I. INTRODUCTION
b,
N There is a growing demand for cathodes that are capable of generating
oY
‘# high current density, high quality electron beam pulses with high
" repetition rate. Such cathodes have application in several high power,
"
:ﬁ short wavelength devices that intend to produce C.W. coherent radiation,
N3
v including gyrotronsl’2 and Free Electron Lasersz’3 (FELs).
b
In the past, several free electron laser experiments used cold electron
N
:: cathodes, such as plasma cathodes, graphite brush cathodes, or velvet
. -
:. cathodes.“ 6 However, these sources are not suitable for repetitively
- pulsed devices. Conventional thermionic dispenser-type cathodes are
}i capable of produging high frequency, repetitively pulsed beams, but are
;3 limited to 1-4 A/cmz. More recent work with chemically depositing osmium
™ coatings have resulted in a large increase in emission (40-50 A/cmz).7
‘3: However, this important development is limited to application in devices
‘ 1
; vhere ultra-high vacuum is maintained.
3 Lanthanum hexaboride (LaB6) is of interest as a thermionic cathode
~ because of its ability to produce high current density electron beam pulses
Y
N (10-50 A/cmz) with high repetition rate, while requiring only modest vacuum
N
N on the order of 10_5 Torr.e_lo For example, Gallagher reported that LaB6
,i cathodes at a temperature of 1400°C are resistant to poisoning for air 3
Y
\ﬁ pressure as high as 5 X 10"5 Torr. He also reported that resistance to
o
:t poisoning increases with increasing temperature.
- o, S
: . Manuscript approved September 1. {987
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Most of the previous work with LaB6 has been limited to cathode cross

sections < 1 mm diameter. High-power free electron lasers require large
currents. Therefore an experimental study of large LaB6 cathodes and
their emission properties is needed.

A technique to uniformly heat large LaB6 cathodes to 1600° - 1800°C,
required for high current density emission, is first presented. This is
folloved by a brief description of the diagnostics used in this experiment.
Cathode temperature profiles are shown which demonstrate the ability to
achieve a uniform temperature distribution over a large area. Current
measurements as a function of voltage are also presented. Results from
emittance measurements are then described which permit a determination of
normalized beam brightness. This result is compared with analytical

calculations of emittance due to cathode temperature and surface roughness.

II. DESCRIPTION OF EXPERIMENT
A. Cathode heating.

The cathodes used are 5 cm diameter, 0.6 cm thick planar discs formed
by hot pressing of LaB6 powder. These sintered discs are commercially
available at densities 70X to 90% of the solid LaB6 density of 4.72 g/cm3.
Special tooling is required to machine this material, which has ceramic-
like hardness, in order to mount the cathodes in a support structure.
These cathodes must be heated to very high temperaturec in order to obtain
high current density electron emission. This is due to the material’s high
work function.

The thermionic limited electron current densiity 1is determined by the
Richardson-Dushman equation:

TZQ-(11600¢/T)

J(A/em?) = A , (1)
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where A and ¢ are constants and T 1is the cathode temperature in degrees
2 2

- %°* and 2.66 eV for A

Kelvin. Lafferty8 has reported the values 29 A/cm

and ¢ respectively. Field assisted thermionic emission is determined by

2 J(A/cmz) - ATZe[(139 el/z/T)-(116OO ¢/T)]’ (2)
ig vhere ¢ is the electric field at the surface of the cathode in kV/cm.
:{ Equation (2) is known as the Schottky equation. Both Eqs. (1) and (2) are
. plotted in Fig. .(1) as a function of cathode temperature in degrees
E Celsius. This figure shows that in order to obtain current density
;; emission of 10 to 50 A/cm2 the cathode surface must be heated between 1600
- - 1800°C. For uniform current density emission, the entire surface of the
;g cathode should be heated uniformly.
f% In the present experiment a uniform temperature prcfile was achieved
i over the cathode’s emitting surface with the help of MITAS, a computer
i thermal analysis code developed by Martin Marietta Corporation. MITAS
é includes radiation and conduction as well as the geometrical details of the
-~ cathode assembly and the anode. The code results were useful in the
:: selection of materials and fabrication techniques for the different parts
fa of the cathode heater assembly. The results also provide the heat loss
': profile of the cathode. Figure 2 shows the cathode temperature profile for
;;3 a specific applied power density distribution. It is apparent that heat is
EE lost predominantly from the edge of the cathode due to thermal radiation.
;: Therefore, the cathode heater assembly was designed to preferentially heat
‘f the cathode toward its edges to achieve a uniform temperature distribution.
E: A schematic of the cathode heater assembly is shown in Figure 3. The
2: cathode is mounted in a graphite hollow disc. Graphite is chosen because
i it is known not to react with LaBG.8 The graphite disc is supported by a
«E 0.1 mm thick tantalum cylindrical shell, which also serves as a radial heat
E shield. Two additional radial heat shields are included in the design.
o The intermediate heat shield supports a thin annular graphite hollow disc,
P
3 :
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which is positioned flush with the cathode surface to serve as an electric

field shaper. In addition, four tantalum plates are used as axial heat
shields. Directly behind the cathode, a 0.5 mm diameter tungsten filament
is woven into a circular disc of boron nitride, which serves as a filament
support. After experimenting with different tungsten alloys (pure W and 1%
Th-V), we have selected a 3% Re-W alloy that is less brittle and easier to
wind than the other alloys tested.

The LaB6 cathode is radiantly warmed from room temperature to 1000°C by
passing 0 to 16 A through the filament. Additional heater power is
provided by electron bombardment to raise the cathode temperature from
1000°C to the desired operating value (~1600° to 1800°C). Typically the
filament is held at -700 V potential with respect to the cathode.
Electrons emitted from the hot filament are accelerated toward the cathode
vhere their energy 1is deposited as heat. After an initial "burn-in"
period, the boron-nitride filament support base becomes coated with a
purple colored film, which is La86 evaporated from the cathode.lo This
film enhances the electron bombardment current, which finally saturates at
an upper limit. This limit is the same as the sp:ce-charge limited current
for electrons emitted from the entire filament support base surface for the
specific filament base to cathode distance. The bombardment current limit
is typically 3 to 4 A. During operation the pressure was between 10—6 to
1073 Torr.

The space-charge limited bombardment current was very stable. As a
result, it was easy to hold the cathode temperature constant in time to
+10°C during operation.

The space-charge limited bombardment current density11 is given by

J(asem?) = 2.336 x 107% v3/ %07, (3)

where V is the filament-cathode potential in Volts and D is the distance in

cm between the cathode and filament support base. The heat deposition
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profile is controlled by making D larger in the center th=n near the edge
of the cathode. As a consequence, the edge of the cathode receives more
N current and therefore more power than the cathode center, resulting in a

nearly uniform cathode temperature profile. Variation of D is accomplished

I, by machining the filament base to a depth determined with the aid of the
: MITAS code. In the experiment, D at the center of the cathode vas
approximately 50%. larger (0.9 cm) than at the edge (0.6 cm).

@

E B. Diagnostics

: A flat planar anode is positioned parallel with the cathode. This is
i' shown schematically in Fig. 4. The anode is mounted to an X, Y, 2
- manipulator, allowing one to vary the anode-cathode gap and the two
3 transverse coordinates of the anode (X, Y) during the experiment. The flat
3 anode surface is made of 1 mm thick tantalum.

E The temperature of the cathode is measured using a Land Instruments
Li infrared thermometer, which detects thermal radiation from 0.8 to 1.1 um.
x The resolution of the instrument is +1°C. Temperature readings are
5: corrected for spectral emissivity, using the value of 0.82, and for
:5 absorption by the glass viewport.lz’ 13

; A 5 mm diameter hole has been drilled in the anode at 1.3 cm from the
% anode center. This hole allows the temperature to be measured by focusing
; the infrared thermometer on the cathode surface. Cathode temperature
y profiles at different fixed X positions are made by synchronously scanning
;; the anode and infrared thermometer in the Y direction.

\ﬂ With the cathode at the desired operating temperature, a beam is
- generated by applying a negative 1 to 10 kV pulse to the cathode with
é respect to the grounded anode. The pulse width is 3 to 6 us long., measured
'’ 5

G
-

'if I T O I L N ATOG NI NN N ":1;kii:i‘le;_ e




‘ata ko Bhe BV 2y AW Y. UW LY LW LT VAT U P UIRT Py | Py 3, « P g 5 B 30t ‘At el Wil tal Ll Sa o Pl el R al ataiohy tal

e W LTH LTI - [

from pulse initiation to the end of the voltage flat top, and is
continuously variable. Voltage pulses are created by discharging a
capacitor through the cathode-anode 1load. A Tektronix voltage probe
measures the voltage amplitude, which is consistent with the known
potential that the capacitor is charged to. Cathode emission current is
measured with a Rogowski coil.

Emittance is measured by employing a 50 um diameter pinhole drilled in
a 130 um thick sheet of tantalum foil. This foil is spot welded over
another 5 mm diameter hole in the anode tantalum plate 1.3 cm off center,
opposite from the temperature measuring hole. The setup is shown in Fig.
4. A beamlet emerging from the pinhole travels a drift length L of 15 c¢m
and strikes a phosphor coated stainless steel plate. The normal of the
phosphor plate surface is tilted 45° with respect to the beam axis of
symmetry so that the beamlet image can be photographed. The beamlet image
is much larger than the pinhole size. The angular divergence of the
beamlet, O, is then AY/L, where AY is the half width of the beamlet image
in the Y-direction. Photographs of the beamlet are made at different
cathode positions by scanning the anode in the Y direction. Spacial
dimensions of the beamlet photographs are measured by raster scanning the
photographs with an optical densitometer. The full width projected on the
Y-axis, 24Y, is determined for each beamlet and from this an average value
of AY for all the beamlets is computed. AY is experimentally observed to
be substantially invariant of both number of photographic shots and pulse

width. Typically, 20 shots are superimposed to get a clear photographic

image of each beamlet. An average value, 8, of 6 is determined. The

. . 4 .
normalized emxttance1 ' 15, en, is then evaluated from

€, = BYRCG, ()
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where Rc is the radius of the cathode emitting surface and B and y are the

usual relativistic factors. The pinhole size and 15 cm drift distance have

been carefully chosen so that space charge expansion of the beamlet can be

neglected. Divergence due to electrostatic deflection of the pinhole is

also negligible. The normalized brightness of the beam is determined from
B, = I/(ne)?, (5)

vhere Ic is the cathode emission current.

III. RESULTS
A. Cathode temperature measurements

As discussed in section II, temperature-limited current density
increases rapidly with temperature. This makes high temperature operation

desirable. The highest cathode temperature measured in our experiment is

1781°cC. Limitations to achieving higher temperatures include electron
bombardment power supply current limits and, to a lesser extent, power
radiated from the cathode heater assembly, which heats the vacuum chamber
walls and causes excessive outgassing. Also, for temperatures much above
1800°C evaporation from the cathode surface becomes excessive.8 The
cathode is routinely operated at temperatures up to 1700°C.

Figure 5 illustrates the D.C. power levels required to heat the 5 cm
diameter cathode to a given temperature. Up to 1000°C the cathode is
heated by radiant power due to the filament current. Above 1000°C both
electron bombardment and radiant power contribute to the cathode heating.
The total power shown in Fig. 5 is the sum of bombardment power and radiant
power. As temperature increases above 1000°C the supplied bombardment
pover increases steadily and becomes larger than the radiant power above

1400°C. Upwards of 1600°C the filament radiant power 1is only a small
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fraction of the bombardment power. Often the filament current is reduced

at this point to increase the filament’s lifetime.

Figure 6 shows an example of a measured temperature profile. The
cathode is scanned in the Y direction for different X positions. Both X
and Y are measured from the center of the cathode. Data, represented by

the discrete open circles, are connected by straight line segmen*s. The

cathode temperature is uniform to +20°C. Additional modification of the

filament support base to concentrate more heat on the cathode edge may
improve uniformity even further.

B. Cathode current measurements

Cathode currents are measured for different cathode-anode potentials

and gap sizes. Currents as high as 200 A are routinely measured,

corresponding to an average current density of 12 A/cm2 over the 16 cm

cathode emitting area.

Figure 7 shows a plot of measured cathode current as a function of
cathode voltage for two different anode-cathode gaps, D. The measured data
are represented by either open circles or open squares. Data in this

figure are for a cathode temperature of 1600°C. Also shown in the graph

are solid lines of constant perveance. These solid lines are calculated
from Child’s law, Eq. (3), for D = 0.3, 0.4, and 0.5 cm, using an emitting
area of 16 cmz. It is clear from Fig. 7 that the data closely follow the
corresponding constant perveance lines within the experimental uncertainty.
This indicates that the beam is space-charge limited. The primary
experimental uncertainty is the size of the cathode-anode gap. In general,
more current is observed than that predicted by the field-assisted

thermionic emission. Specifically, for D = 0.4 cm, V = 9.0 kVand T =

1600°C, Eq. (2) gives 170 A, which 1is approximately 85% nf the measured

| JRARS ARl FAPWS



current. This may be due to ions knocked off the ancde by the primary
. electron beam. These ions would be accelerated toward the cathode where
. they in turn produce secondary electrons which add to the primary beam
current. Another possibility is that the values of work function, ¢, and
Richardson constant, A, are significantly different than Lafferty’s values

2—°K2 used in determining the graph in Fig. 1. For

2 _ o2 10

of 2.66 eV and 29 A/cm
example, Ahmed reported ¢ = 2.4 eV and A = 40 A/cm This can also
account for the difference between the observed current and the computed

temperature limited current.

C. Beam brightness measurements

Brightness is a useful measure of beam quality for FEL experiments.16
Brightness, as previously discussed, is experimentally determined by
measuring the normalized beam emittance and cathode emission current. Then
brightness is readily computed using Eq. (5).

Results reported in the paper are for a cathode temperature of 1560°C.
Higher cathode temperatures cause excess background light on the phosphor
plate. Beam energy and current are 10 keV and 85 A respectively. The
cathode-anode gap is measured to be 0.5 cm. During these measurements the
pinhole was located, in succesive runs, at Y = 0.0, 0.5 and 1.0 cm from the
cathode midplane and was displaced from the vertical axis that passes
through the cathode center by 1.3 cm. At each Y position 8 is determined.

From these values of 6, the average angular divergence is computed to be

8 = 1142 mrad. Then, from Eqs. (4) and (53), €, = 5.0+1 cm-mrad and the
normalized brightness is B = 3.4:1 X 10° a/cm’-rad”.
Effects that may contribute to the observed emittance include the

cathode temperature, non uniform emission and surface roughness. The

’ " ‘, . 't --1 = - = = '-Q "a T e "- _‘- Y e e - - = . DR T - R P S T Y - 2 - - -
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cathode temperature imposes a lower bound on the emittance of a beam
emitted from a thermionic cathode. For a uniform temperature and emission
‘5 profile, normalized RMS emittance due to temperature is given approximately
: by & = ByRc(ZkT/eV)l/z, wvhere k is Boltzmann’s constant, T is the absolute

temperature, and eV is the beam energy at the anode.14 From this equation,

Pt i b )

& = 2.6 cm-mrad for a 10 keV beam of electrons emitted from a 5 cm
diameter cathode operated at 1560°C.

Contribution to the emittance from non uniform emission at the cathode
is not probably very important, because the transit time of the electrons
4 is substantially shorter than the electron plasma period, at least for the
¥ temperature limited case. Figure 8 shows electron microscope photographs
of LaB6 cathodes before use and after 28 hours of use at the operating
temperature of 1550°C or higher. It is apparent that these cathodes are
% initially rather smooth and have only slowly wvarying surface

irregularities. During operation the cathode surface becomes much rougher.
" Protrusions and craters appear scattered over the cathode surface. To what
extent the roughness is caused by cathode heating alone and to to what
extent the roughness is caused by electron beam operation is presently
uncertain. One possible mechanism is that ions knocked off the anode
surface by the incident electron beam are subsequently accelerated back to
the cathode surface and their impact <creates the observed roughness
; features. The height of the cathode protrusions vary between O and 4 um, ]
with a median value of 2 ym. Y.Y. Lau has derived analytic equations which
h enable one to calculate the emittance that is due to surface roughness as a '
function of height, h, and width, w, of the protrusions.17 For our
experimental parameters, V = 10 kV and D = 0.5 cm, £, varies only about

+10% for w/h varying over the range from 0O to 1. The median value of €y . .
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for h = 2 um and w/h between O and 1, is then 1.9 cm-mrad for space-charge
limited emission and 6.3 cm-mrad for temperature-limited emission. The
experimental value, €, = 5.0+1 cm-mrad, 1is measured for the transitional
region between space charge and ‘temperature limited emission. The

roughness contribution to € wvhich falls between 1.9 cm-mrad and 6.3 cm-

mrad is then consistent with our measured value.

IV. CONCLUSIONS
This paper reports on the generation of high current density, high

brightness, long duration electron beam pulses from large area LaB6

cathodes. These measurements have been made between pressure 10-6 to 10—5
Torr, i.e., under substantially less demanding vacuum conditions than that
required by conventional dispenser type cathodes.

Our results indicate that LaB6 cathodes have substantial potential in
the generation of coherent radiation in repetitively pulsed devices or in
the generation of 1long pulse duration radiation. Their resistance to
poisoning make them more attractive than other thermionic cathodes but

their high temperature requires special care in the design of the gun and

the selection of its components.
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